EVALUATION OF ST. AUGUSTINEGRASS FERTILIZATION REGIMENS J.O. Suazo¹, S.M. Dorrian¹, K.B. Aldrich¹, K.H. Quesenberry¹, J.L. Buhlman¹, J.B. Unruh², and K.E. Kenworthy¹.

Introduction

- St. Augustinegrass (*Stenotaphrum secundatum*) is a warm-season subtropical species and is the most widely produced and utilized turfgrass for sod and lawns in Florida.
- Fertilization is an important component of lawn management; however, there are environmental concerns associated with the application of fertilizers. The fertilization of turfgrass areas is often associated with leaching and runoff of nutrients that can negatively impact bodies of water.
- Environmental concerns have led some counties to establish seasonal restrictions over-fertilization (blackout period); these periods usually prohibits the applications of nitrogen and phosphorus during rainy seasons.
- Further research is required on fertilization regimens based on blackout periods on how well the lawn grows.
- The objective of this study was to evaluate different fertilization regimens across three cultivars and two mowing heights.

Figure 1 & 2. Experiment's design

1		Mowing Heights		
		3.5"	2.0"	
		CitraBlue		
		101	105	
		102	106	
		103	107	
		104	108	
		Palmetto		
		201	205	
		202	206	
		203	207	
		204	208	
		Floratam		
		301	305	
		302	306	
		303	307	
+		304	308	

Materials & Methods

- Trial was located at the Plant Science Research and Education Unit (PSREU), FL. It was established in fall 2017 and fertilization started in fall 2018. Data was gathered from fall 2018 to fall 2020.
- Experimental design was a RCBD with a strip-split plot design and three repetitions (Fig 1 & 2).
- The treatments were three St. Augustinegrass cultivars ('CitraBlue', 'Floratam', and 'Palmetto') as whole plots, two mowing heights (5.0 and 8.75 cm) as subplots, and four fertilization regimens (UF-IFAS recommendations, summer blackout, national retail product recommendations, and an untreated control) as sub-subplot (Table 1).
- Variables measured were turf quality (TQ), color, and density (on a scale of 1-9), leaf chlorophyll levels (SPAD), and canopy height. Data was gathered monthly

¹Agronomy Department, University of Florida, Gainesville, FL, USA ²Environmental Horticulture Department, West Florida Research and Education Center University of Florida, Jay, FL, USA

Table 1. Fertilization regimens

Fertilization Programs
Scotts – 4x year: 0.8 lb/ 1000sqft per
21.96g Scotts Crabgrass Preve
20.41 g Scotts LawnPro Step 3
20.41 g Scotts LawnPro Step 3
20.41 g Scotts LawnPro Step 4
IFAS – 4x year: 1.0 lb/ 1000sqft per a
54.43g Scotts Crabgrass Preve
54.43 g Scotts IFAS – 15-0-15
54.43 g Scotts IFAS – 15-0-15
54.43 g Scotts IFAS – 15-0-15
Blackout – 3x year: 1.0 lb/ 1000sqft p
18.99g Polyon 43 – 15-0-15 –
18.99 g Polyon 43 – 15-0-15 –
18.99 g Polyon 43 – 15-0-15 –
Unfertilized Control
N/A

Statistical Analysis

- Monthly data was grouped by seasons (spring, summer, and fall).
- A two-way ANOVA with interactions was performed ($P \le 0.05$) and a Duncan's (MRT).
- Statistical Model: y = block + cultivar + whole plot error + mowing height + cultivar*mowing height + subplot error + fertilizer + cultivar * fertilizer + mowing height * fertilizer + cultivar * mowing height * fertilizer + sub-subplot error.

Results & Discussion

Turf Quality, Color, Density, and SPAD units

- There were significant differences in TQ, color, density, and SPAD units due to the fertilization regimens and the different cultivars. There were no significant interactions between the different independent variables.
- No added fertility showed lower performance.
- Differences between the three regimens were minimal (Fig 3).
- CitraBlue presented the best TQ, color, density, and SPAD values, followed by Palmetto and Floratam.

Table 2. Results based on fertilization regimens

Fertilizer	Turf Quality	Color	Density	Chlorophyll content	Canopy height
Blackout	6.43 a*	6.48 a	6.54 a	34.96 ab	7.04 b
IFAS	6.36 a	6.39 a	6.49 ab	35.68 a	7.33 a
Scotts	6.22 b	6.24 b	6.38 b	34.45 b	6.82 c
UTC	5.20 c	5.34 c	5.35 c	33.31 c	5.90 d
CV (%)	14.41	15.07	14.27	25.84	23.72

* Values in the same column followed by the same letter are not significantly different at $P \le 0.05$

application -3.2 lbs N total enter Plus Fertilizer – February 15 3 Lawn Food – April 01 3 Lawn Food – June 01 4 Lawn Fertilizer – September 01 application – 4.0 lbs N total enter Plus Fertilizer – February 15 5 April 01 5 August 01 5 October 01 per application – 3.0 lbs N total April 01 – May 01 - October 01

Table 3. Results based on cultivars

Cultivar	Turf Quality	Color	Density	Chlorophyll content	Canopy height
CitraBlue	6.58 a*	6.64 a	6.73 a	39.80 a	5.12 c
Palmetto	5.92 b	6.01 b	6.14 b	33.81 b	7.01 b
Floratam	5.66 c	5.69 c	5.71 c	30.19 c	8.11 a
CV (%)	14.41	15.07	14.27	27.84	23.72

* Values in the same column followed by the same letter are not significantly different at P \leq 0.05

Figure 3. Turfgrass quality across fertilization programs

Figure 4. Turfgrass quality across fertilization programs

	2018 2019				2020			
Fertilizer	Fall	Spring	Summer	Fall	Spring	Summer	Fall	
Blackout	7.18 a*	5.25 a	6.99 a	7.17 a	5.84 a	6.23 a	6.35 a	
IFAS	6.96 ab	4.86 b	6.96 a	7.02 ab	5.83 a	6.48 a	6.48 a	
Scotts	6.76 b	4.70 b	6.75 a	6.75 b	5.59 a	6.44 a	6.25 a	
UTC	6.16 c	4.39 c	5.36 b	5.63 c	4.59 b	4.79 b	4.99 b	
CV (%)	5.59	8.51	5.76	7.27	8.32	8.80	6.84	

* Values in the same column followed by the same letter are not significantly different at P \leq 0.05

- On

IF IFAS **UNIVERSITY** of FLORIDA

seasonal basis, there were minimal differences between IFAS recommendations and the Blackout regimen for turfgrass quality.

• CitraBlue was the better cultivar in response to these fertilization regimens.